# Leistungsoptimierung - Performance-Maximierung im WMS

⚡ WMS Performance Excellence

Systematische Optimierungsstrategien für maximale Effizienz des Jungheinrich WMS bei Georg Fischer

📈 PERFORMANCE-ZIELE

Ziel: Systemantwortzeit < 2 Sekunden, 99.9% Verfügbarkeit, 0% Datenverlust

Performance-Support: +41 81 770 5555 (Performance Team)

## Überblick Die Performance-Optimierung des Jungheinrich WMS ist entscheidend für die Produktivität bei Georg Fischer. Diese Dokumentation bietet systematische Ansätze zur Identifikation, Analyse und Behebung von Performance-Problemen sowie präventive Optimierungsmaßnahmen. ## Navigation
## System-Performance {#system-performance}
### Performance-Baseline #### **Aktuelle Performance-Kennzahlen** ```yaml performance_baselines: response_times: login: "< 3 Sekunden" order_creation: "< 5 Sekunden" inventory_lookup: "< 2 Sekunden" report_generation: "< 30 Sekunden" throughput: concurrent_users: "100 gleichzeitige Benutzer" transactions_per_minute: "500 TPS" pick_operations: "120 Picks/Stunde/Operator" availability: uptime_target: "99.9%" planned_downtime: "< 4 Stunden/Monat" mttr: "< 2 Stunden" mtbf: "> 720 Stunden" ``` #### **Performance-KPIs Dashboard** ```yaml kpi_metriken: system_metrics: cpu_utilization: target: "< 70%" warning: "70-85%" critical: "> 85%" memory_usage: target: "< 75%" warning: "75-90%" critical: "> 90%" disk_io: target: "< 50 IOPS/GB" warning: "50-80 IOPS/GB" critical: "> 80 IOPS/GB" application_metrics: session_count: target: "< 80 aktive Sessions" warning: "80-100 Sessions" critical: "> 100 Sessions" queue_depth: target: "< 10 Nachrichten" warning: "10-50 Nachrichten" critical: "> 50 Nachrichten" ``` ### Bottleneck-Analyse #### **Systematische Performance-Diagnose** ```yaml bottleneck_analysis: step_1_overview: tool: "Windows Performance Monitor" metrics: ["CPU", "Memory", "Disk", "Network"] duration: "15 Minuten Peak-Zeit-Monitoring" step_2_database: tool: "SQL Server Management Studio" queries: ["sp_who2", "sys.dm_exec_requests", "sys.dm_os_wait_stats"] focus: "Blocking, Wait Stats, Long-running Queries" step_3_application: tool: "Application Event Logs" search: "WMS-spezifische Fehlermeldungen" patterns: "Timeout-Errors, Memory-Exceptions" step_4_network: tool: "Network Performance Monitor" tests: ["Latency zu DB-Server", "Bandwidth-Auslastung"] baselines: "< 5ms Latency, < 70% Bandwidth" ``` #### **Common Performance Issues** ```yaml haeufige_probleme: slow_login: symptom: "Anmeldung dauert > 10 Sekunden" ursachen: - "Active Directory Latency" - "Benutzerrechte-Validierung langsam" - "Session-Store überlastet" solutions: - "AD-Connection-Pool optimieren" - "Lokale Benutzerrechte-Cache" - "Session-Store auf SSD migrieren" slow_reporting: symptom: "Berichte-Generierung > 60 Sekunden" ursachen: - "Fehlende Datenbank-Indizes" - "Große Datenmengen ohne Paginierung" - "Unoptimierte SQL-Queries" solutions: - "Index-Analyse und -Optimierung" - "Report-Paginierung implementieren" - "Query-Execution-Plan analysieren" high_memory_usage: symptom: "Arbeitsspeicher-Verbrauch > 90%" ursachen: - "Memory Leaks in Anwendung" - "Zu große Cache-Größen" - "Unzureichende Garbage Collection" solutions: - "Memory-Profiling durchführen" - "Cache-Strategien überprüfen" - "GC-Parameter anpassen" ``` ### Hardware-Optimierung #### **Server-Konfiguration** ```yaml server_optimization: cpu_optimization: cores: "Minimum 8 Cores für WMS-Server" clock_speed: "Minimum 2.4 GHz" hyperthreading: "Aktiviert für Multi-Threading" power_plan: "High Performance" memory_optimization: total_ram: "32 GB für Produktionsserver" allocation: os_reserved: "4 GB" sql_server: "16 GB" wms_application: "8 GB" cache_buffer: "4 GB" storage_optimization: system_drive: "SSD für OS und Programme" database_files: "Separate SSD/NVMe für DB-Files" log_files: "Separate SSD für Transaction Logs" backup_storage: "Schnelle NAS für Backup-Files" ``` #### **Netzwerk-Optimierung** ```yaml network_optimization: lan_configuration: bandwidth: "Gigabit Ethernet minimum" switch_ports: "Dedicated Ports für kritische Server" vlan_segmentation: "Separate VLANs für WMS-Traffic" wan_optimization: compression: "Aktiviert für SAP-Verbindungen" caching: "Lokaler Cache für häufige Abfragen" qos: "Priorisierung von WMS-Traffic" wireless_optimization: standard: "WiFi 6 (802.11ax) für Mobile Terminals" coverage: "Vollständige Lager-Abdeckung" handoff: "Nahtloser Roaming zwischen Access Points" ```
## Datenbank-Optimierung {#database-optimization}
### SQL Server Performance Tuning #### **Index-Optimierung** ```sql -- Index-Analyse und -Optimierung -- 1. Fehlende Indizes identifizieren SELECT migs.avg_total_user_cost * (migs.user_seeks + migs.user_scans) as improvement_measure, 'CREATE INDEX IX_' + REPLACE(REPLACE(REPLACE(mid.statement, '[', ''), ']', ''), '.', '_') + '_' + CAST(ROW_NUMBER() OVER (ORDER BY migs.avg_total_user_cost DESC) AS VARCHAR(3)) + ' ON ' + mid.statement + ' (' + ISNULL(mid.equality_columns, '') + CASE WHEN mid.inequality_columns IS NOT NULL THEN (CASE WHEN mid.equality_columns IS NOT NULL THEN ',' ELSE '' END) + mid.inequality_columns ELSE '' END + ')' + CASE WHEN mid.included_columns IS NOT NULL THEN ' INCLUDE (' + mid.included_columns + ')' ELSE '' END as create_index_statement, migs.user_seeks, migs.user_scans, migs.avg_total_user_cost FROM sys.dm_db_missing_index_groups mig INNER JOIN sys.dm_db_missing_index_group_stats migs ON migs.group_handle = mig.index_group_handle INNER JOIN sys.dm_db_missing_index_details mid ON mig.index_handle = mid.index_handle WHERE migs.avg_total_user_cost * (migs.user_seeks + migs.user_scans) > 10 ORDER BY improvement_measure DESC; -- 2. Fragmentierte Indizes identifizieren SELECT OBJECT_NAME(ips.object_id) as table_name, i.name as index_name, ips.avg_fragmentation_in_percent, ips.page_count, CASE WHEN ips.avg_fragmentation_in_percent > 30 THEN 'REBUILD' WHEN ips.avg_fragmentation_in_percent > 10 THEN 'REORGANIZE' ELSE 'NO ACTION' END as recommendation FROM sys.dm_db_index_physical_stats(DB_ID(), NULL, NULL, NULL, 'SAMPLED') ips INNER JOIN sys.indexes i ON ips.object_id = i.object_id AND ips.index_id = i.index_id WHERE ips.avg_fragmentation_in_percent > 10 AND ips.page_count > 100 ORDER BY ips.avg_fragmentation_in_percent DESC; ``` #### **Query-Optimierung** ```sql -- Langsame Queries identifizieren SELECT TOP 10 qs.total_elapsed_time / qs.execution_count / 1000 as avg_duration_ms, qs.execution_count, qs.total_logical_reads / qs.execution_count as avg_logical_reads, SUBSTRING(st.text, (qs.statement_start_offset/2)+1, ((CASE qs.statement_end_offset WHEN -1 THEN DATALENGTH(st.text) ELSE qs.statement_end_offset END - qs.statement_start_offset)/2) + 1) as statement_text, qp.query_plan FROM sys.dm_exec_query_stats qs CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp WHERE qs.total_elapsed_time / qs.execution_count > 1000000 -- > 1 Sekunde ORDER BY avg_duration_ms DESC; -- Blocking-Situationen analysieren SELECT blocking.session_id as blocking_spid, blocked.session_id as blocked_spid, blocking_sql.text as blocking_sql, blocked_sql.text as blocked_sql, w.wait_type, w.wait_time_ms, w.resource_description FROM sys.dm_exec_sessions blocking INNER JOIN sys.dm_exec_sessions blocked ON blocking.session_id = blocked.blocking_session_id CROSS APPLY sys.dm_exec_sql_text(blocking.most_recent_sql_handle) blocking_sql CROSS APPLY sys.dm_exec_sql_text(blocked.most_recent_sql_handle) blocked_sql LEFT JOIN sys.dm_os_waiting_tasks w ON blocked.session_id = w.session_id WHERE blocking.session_id != blocked.session_id; ``` ### Database Configuration #### **SQL Server Einstellungen** ```yaml sql_server_configuration: memory_settings: max_server_memory: "16384 MB" # 16 GB für 32 GB Server min_server_memory: "8192 MB" # 8 GB Minimum optimize_for_ad_hoc: "1" # Plan Cache optimieren io_settings: max_degree_of_parallelism: "4" # Anzahl CPU Cores / 2 cost_threshold_for_parallelism: "50" page_verify: "CHECKSUM" tempdb_optimization: data_files: "4" # Ein File pro CPU Core initial_size: "1024 MB" growth: "256 MB" separate_drive: "T:\\" maintenance_settings: auto_update_statistics: "ON" auto_create_statistics: "ON" backup_compression: "ON" recovery_model: "FULL" ``` #### **Wartungsplan** ```sql -- Automatisierter Wartungsplan -- 1. Index-Wartung (Sonntags 02:00) DECLARE @sql NVARCHAR(MAX) = ''; SELECT @sql = @sql + CASE WHEN avg_fragmentation_in_percent > 30 THEN 'ALTER INDEX ' + i.name + ' ON ' + SCHEMA_NAME(t.schema_id) + '.' + t.name + ' REBUILD;' + CHAR(13) WHEN avg_fragmentation_in_percent > 10 THEN 'ALTER INDEX ' + i.name + ' ON ' + SCHEMA_NAME(t.schema_id) + '.' + t.name + ' REORGANIZE;' + CHAR(13) END FROM sys.dm_db_index_physical_stats(DB_ID(), NULL, NULL, NULL, 'SAMPLED') ips INNER JOIN sys.indexes i ON ips.object_id = i.object_id AND ips.index_id = i.index_id INNER JOIN sys.tables t ON i.object_id = t.object_id WHERE ips.avg_fragmentation_in_percent > 10 AND ips.page_count > 100; EXEC sp_executesql @sql; -- 2. Statistiken aktualisieren EXEC sp_updatestats; -- 3. Database Integrity Check DBCC CHECKDB('WMS_GF_PROD') WITH NO_INFOMSGS; ``` ### Connection Pooling #### **Verbindungspool-Optimierung** ```yaml connection_pooling: pool_configuration: min_pool_size: "5" max_pool_size: "100" connection_timeout: "30" command_timeout: "300" connection_string_optimization: | Server=WMSDB01;Database=WMS_GF_PROD; Integrated Security=true; Connection Timeout=30; Command Timeout=300; Max Pool Size=100; Min Pool Size=5; Pooling=true; Connection Lifetime=600; monitoring: pool_performance_counters: - "Current # pooled connections" - "Current # connection pools" - "Peak # pooled connections" - "Total # failed connections" ```
## Anwendungs-Tuning {#application-tuning}
### .NET Application Optimization #### **Memory Management** ```yaml memory_optimization: garbage_collection: gc_mode: "Server GC für Multi-Core-Server" concurrent_gc: "Aktiviert für bessere Responsiveness" gc_heap_size: "Nicht mehr als 70% des verfügbaren RAM" memory_profiling: tools: ["PerfView", "JetBrains dotMemory", "ANTS Memory Profiler"] focus_areas: - "Memory Leaks in Event Handlers" - "Große Object Heap (LOH) Fragmentierung" - "Unmanaged Memory Leaks" caching_strategy: application_cache: size_limit: "512 MB" expiry_policy: "Sliding 30 Minuten" items: ["Benutzerberechtigungen", "Materialstamm", "Lagerplätze"] session_cache: provider: "SQL Server" timeout: "30 Minuten" compression: "Aktiviert für große Sessions" ``` #### **Code-Optimierungen** ```csharp // Beispiel: Optimierte Datenbank-Abfrage public async Task> GetInventoryOptimizedAsync(string location) { // 1. Connection Pooling nutzen using var connection = new SqlConnection(connectionString); // 2. Prepared Statements für bessere Performance const string sql = @" SELECT i.ItemId, i.ItemNumber, i.Quantity, i.Location FROM Inventory i WITH (NOLOCK) INNER JOIN Items it ON i.ItemId = it.Id WHERE i.Location = @Location AND i.IsActive = 1 ORDER BY i.ItemNumber"; // 3. Async-Operationen für Non-Blocking IO var result = await connection.QueryAsync(sql, new { Location = location }); // 4. Materialized List für bessere Memory-Effizienz return result.ToList(); } // Beispiel: Caching-Pattern private static readonly MemoryCache _cache = new MemoryCache(new MemoryCacheOptions { SizeLimit = 1000 }); public async Task GetMaterialAsync(string materialNumber) { string cacheKey = $"material_{materialNumber}"; if (_cache.TryGetValue(cacheKey, out MaterialMaster cachedMaterial)) { return cachedMaterial; } var material = await _repository.GetMaterialAsync(materialNumber); var cacheOptions = new MemoryCacheEntryOptions { AbsoluteExpirationRelativeToNow = TimeSpan.FromMinutes(30), Size = 1 }; _cache.Set(cacheKey, material, cacheOptions); return material; } ``` ### Web Application Tuning #### **IIS-Optimierung** ```yaml iis_optimization: application_pool: process_model: idle_timeout: "0" # Keine automatische Recycling max_processes: "1" # Single Process für bessere Memory-Effizienz ping_enabled: "false" recycling_conditions: memory_limit: "1.5 GB" time_based: "Täglich um 03:00" request_limit: "100000 Requests" compression: static_compression: "Aktiviert" dynamic_compression: "Aktiviert für .aspx/.ashx" compression_level: "9" # Maximum caching: output_caching: reports: "5 Minuten" static_data: "60 Minuten" user_specific: "Deaktiviert" kernel_caching: "Aktiviert für statische Inhalte" ``` #### **Session State Optimization** ```xml ``` ### Client-Side Optimization #### **Browser-Performance** ```yaml client_optimization: javascript_optimization: minification: "Aktiviert für Produktionsumgebung" bundling: "CSS/JS-Files kombinieren" async_loading: "Nicht-kritische Scripts async laden" resource_optimization: image_compression: "WebP-Format wo möglich" css_optimization: "Critical CSS inline" font_loading: "Web Font Loader verwenden" caching_headers: static_resources: "Cache-Control: max-age=31536000" dynamic_content: "Cache-Control: no-cache" api_responses: "ETag-Header für Conditional Requests" ```
## Infrastruktur {#infrastructure}
### Server-Infrastruktur #### **Virtualisierung-Optimierung** ```yaml virtualization_tuning: vmware_settings: cpu_allocation: reservation: "50% der zugewiesenen vCPUs" limit: "Unlimited" shares: "High für WMS-VMs" memory_allocation: reservation: "100% für Produktions-VMs" ballooning: "Deaktiviert" transparent_page_sharing: "Deaktiviert" storage_optimization: disk_type: "Thick Provisioned Eager Zeroed" multipathing: "Aktiviert für Storage-Arrays" queue_depth: "32 für High-Performance" hyper_v_settings: dynamic_memory: "Deaktiviert für WMS-VMs" integration_services: "Alle aktuellen Services installiert" numa_spanning: "Deaktiviert für bessere Performance" ``` #### **Load Balancing** ```yaml load_balancing: web_tier: algorithm: "Least Connections" health_checks: "HTTP 200 auf /health-endpoint" session_affinity: "Aktiviert für Session-State" application_tier: clustering: "Active/Active für WMS-Services" failover_time: "< 30 Sekunden" data_replication: "Sync zwischen Cluster-Nodes" database_tier: always_on: "Availability Groups konfiguriert" read_replicas: "Read-Only für Reporting" automatic_failover: "Bei Primary-Ausfall" ``` ### Storage-Optimierung #### **SAN/NAS-Konfiguration** ```yaml storage_optimization: disk_configuration: database_files: raid_level: "RAID 10" disk_type: "SSD/NVMe" stripe_size: "64KB" log_files: raid_level: "RAID 1" disk_type: "High-Speed SSD" dedicated_spindles: "Separate von Data Files" backup_storage: raid_level: "RAID 6" disk_type: "High-Capacity SATA" deduplication: "Aktiviert" io_optimization: queue_depth: "32-64 für SSD" io_scheduler: "NOOP für SSD" read_ahead: "128KB für Sequential Reads" ``` #### **Backup-Performance** ```yaml backup_optimization: backup_strategy: compression: "Hardware-Compression bevorzugt" parallelization: "4 parallele Backup-Streams" network_optimization: "Dedicated Backup-VLAN" restore_optimization: staging_area: "High-Speed Storage für Restores" parallel_restore: "Mehrere Files gleichzeitig" verification: "Async Backup-Verification" ``` ### Netzwerk-Infrastruktur #### **Bandbreiten-Management** ```yaml network_optimization: qos_configuration: wms_traffic: "Höchste Priorität (DSCP 46)" sap_integration: "Hohe Priorität (DSCP 34)" backup_traffic: "Niedrige Priorität (DSCP 10)" bandwidth_allocation: wms_operations: "60% der verfügbaren Bandbreite" integration_traffic: "25% für SAP/EDI" management_traffic: "15% für Administration" link_aggregation: server_uplinks: "LACP für redundante Verbindungen" inter_switch: "Port Channels für Hochlast-Verbindungen" wan_links: "ECMP für Load Distribution" ``` #### **Monitoring & Alerting** ```yaml infrastructure_monitoring: server_monitoring: cpu_threshold: "Warning > 70%, Critical > 85%" memory_threshold: "Warning > 80%, Critical > 90%" disk_space: "Warning < 20%, Critical < 10%" network_monitoring: latency_threshold: "Warning > 10ms, Critical > 20ms" packet_loss: "Warning > 0.1%, Critical > 1%" bandwidth_utilization: "Warning > 70%, Critical > 85%" storage_monitoring: iops_threshold: "Warning > 80% of max IOPS" response_time: "Warning > 10ms, Critical > 20ms" queue_depth: "Warning > 16, Critical > 32" ```
## Performance-Monitoring {#monitoring}
### Monitoring-Framework #### **Überwachungs-Architektur** ```yaml monitoring_architecture: data_collection: agents: windows_perfmon: "System-Metriken sammeln" sql_server_agent: "Database-Performance" application_insights: "Application Performance Monitoring" metrics_storage: short_term: "InfluxDB für Real-time Metrics" long_term: "SQL Server für Historical Data" retention: "Real-time: 7 Tage, Historical: 2 Jahre" visualization: dashboards: "Grafana für Executive Dashboards" alerting: "Email + SMS + Slack Integration" reporting: "Wöchentliche Performance-Reports" ``` #### **Key Performance Indicators** ```yaml performance_kpis: system_metrics: availability: calculation: "(Uptime / Total Time) * 100" target: "> 99.9%" measurement: "Minutenweise Überwachung" response_time: calculation: "95th Percentile Response Time" target: "< 2 Sekunden" measurement: "Kontinuierliche Messung" throughput: calculation: "Successful Transactions / Time" target: "> 500 TPS" measurement: "5-Minuten-Durchschnitt" business_metrics: picks_per_hour: calculation: "Picks / Worked Hours" target: "> 120 Picks/Stunde" measurement: "Schichtweise Aggregation" error_rate: calculation: "(Failed Operations / Total Operations) * 100" target: "< 0.1%" measurement: "Tägliche Berechnung" ``` ### Real-Time Performance Monitoring #### **Live-Dashboard Konfiguration** ```yaml dashboard_configuration: executive_dashboard: refresh_interval: "30 Sekunden" widgets: - system_health_summary - current_active_users - transaction_throughput - error_rate_trend - sla_compliance_gauge technical_dashboard: refresh_interval: "10 Sekunden" widgets: - cpu_utilization_graph - memory_usage_trend - disk_io_metrics - network_latency_map - database_performance operational_dashboard: refresh_interval: "60 Sekunden" widgets: - warehouse_productivity - pick_accuracy_rates - inventory_accuracy - order_fulfillment_times ``` #### **Alerting-Strategie** ```yaml alerting_framework: severity_levels: critical: response_time: "5 Minuten" notification: "SMS + Phone Call + Email" escalation: "Nach 15 Minuten Auto-Escalation" high: response_time: "15 Minuten" notification: "Email + Slack" escalation: "Nach 1 Stunde Manager-Notification" medium: response_time: "1 Stunde" notification: "Email" escalation: "Nach 4 Stunden Team Lead" low: response_time: "4 Stunden" notification: "Daily Digest Email" escalation: "Wöchentlicher Review" alert_correlation: suppression: "Ähnliche Alerts innerhalb 5 Minuten gruppieren" root_cause: "Automatische Root-Cause-Analyse" dependencies: "Alert-Dependencies berücksichtigen" ``` ### Performance Reports #### **Automatisierte Berichterstattung** ```yaml performance_reporting: daily_reports: recipients: ["operations-team@gf.com", "it-team@gf.com"] content: - "24h System Health Summary" - "Peak Usage Times" - "Error Summary" - "Performance Trends" weekly_reports: recipients: ["management@gf.com", "operations-manager@gf.com"] content: - "SLA Compliance Summary" - "Capacity Planning Metrics" - "Performance Improvement Opportunities" - "Cost-Benefit Analysis" monthly_reports: recipients: ["executives@gf.com", "board@gf.com"] content: - "Strategic Performance Overview" - "ROI Analysis" - "Technology Roadmap Updates" - "Business Impact Assessment" ``` #### **Performance Benchmarking** ```sql -- Performance Baseline Queries -- 1. Response Time Trends SELECT DATE(timestamp) as date, operation_type, AVG(response_time_ms) as avg_response_time, PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY response_time_ms) as p95_response_time, COUNT(*) as operation_count FROM performance_metrics WHERE timestamp >= DATEADD(day, -30, GETDATE()) GROUP BY DATE(timestamp), operation_type ORDER BY date DESC, operation_type; -- 2. System Resource Utilization SELECT DATEPART(hour, timestamp) as hour_of_day, AVG(cpu_percent) as avg_cpu, AVG(memory_percent) as avg_memory, AVG(disk_io_percent) as avg_disk_io FROM system_metrics WHERE timestamp >= DATEADD(day, -7, GETDATE()) GROUP BY DATEPART(hour, timestamp) ORDER BY hour_of_day; -- 3. Database Performance Metrics SELECT database_name, AVG(logical_reads) as avg_logical_reads, AVG(physical_reads) as avg_physical_reads, AVG(duration_ms) as avg_duration, COUNT(*) as query_count FROM query_performance_stats WHERE execution_time >= DATEADD(day, -1, GETDATE()) GROUP BY database_name ORDER BY avg_duration DESC; ```
## Best Practices ### Performance-Optimierungs-Checklist #### **Regelmäßige Wartungsaufgaben** ```yaml maintenance_checklist: taegliche_aufgaben: - "System Health Dashboard überprüfen" - "Error Logs auf neue Probleme prüfen" - "Backup Success Status validieren" - "Performance Alerts reviewen" woechentliche_aufgaben: - "Index Fragmentation Analysis" - "Query Performance Review" - "Capacity Planning Update" - "Security Patch Assessment" monatliche_aufgaben: - "Comprehensive Performance Review" - "Hardware Utilization Analysis" - "Cost-Benefit Analysis Update" - "Technology Roadmap Review" quartalsweise_aufgaben: - "Performance Baseline Update" - "Disaster Recovery Testing" - "Security Audit" - "Business Continuity Plan Review" ``` #### **Proaktive Optimierung** ```yaml proactive_optimization: capacity_planning: growth_projection: "20% jährliches Wachstum" resource_forecasting: "6 Monate im Voraus" performance_modeling: "Load-Testing für neue Features" continuous_improvement: performance_reviews: "Monatliche Team-Reviews" optimization_sprints: "Quartalsweise Verbesserungs-Sprints" technology_evaluation: "Halbjährliche Tool-Evaluierung" knowledge_management: documentation: "Performance-Playbooks aktuell halten" training: "Regelmäßige Performance-Schulungen" best_practices: "Lessons Learned dokumentieren" ``` ## Support & Eskalation ### Performance Support Team ```yaml support_struktur: level_1_monitoring: team: "Operations Center" telefon: "+41 81 770 5555" email: "performance-monitoring@georgfischer.com" verfuegbarkeit: "24/7" level_2_analysis: team: "Performance Engineering" telefon: "+41 81 770 5566" email: "performance-engineering@georgfischer.com" verfuegbarkeit: "Mo-Fr 07:00-19:00" level_3_architecture: team: "Principal Engineers" telefon: "+41 81 770 5577" email: "principal-engineers@georgfischer.com" verfuegbarkeit: "Nach Vereinbarung" ``` ## Quick Reference ### Performance-Troubleshooting | Symptom | Wahrscheinliche Ursache | Sofort-Maßnahme | |---------|------------------------|------------------| | **Langsame Anmeldung** | AD-Latency oder Cache-Problem | Connection Pool prüfen | | **Hohe CPU-Last** | Ineffiziente Queries oder Indexprobleme | Top Queries analysieren | | **Memory-Lecks** | Application Memory-Management | Memory Profiling starten | | **Disk I/O-Bottleneck** | Index Fragmentation | Index Rebuild ausführen | | **Netzwerk-Latency** | WAN-Verbindung oder Switch-Problem | Network Monitoring aktivieren | ### Performance-Targets - **Response Time:** < 2 Sekunden (95th Percentile) - **Availability:** > 99.9% Uptime - **Throughput:** > 500 Transaktionen/Minute - **Error Rate:** < 0.1% - **Resource Utilization:** < 70% CPU/Memory --- *Diese Performance-Dokumentation wird kontinuierlich aktualisiert basierend auf aktuellen Monitoring-Daten und Best Practices. Letzte Aktualisierung: März 2025*