# Error Logs - Fehlerprotokoll-Analyse

📊 Systematische Log-Analyse

Effiziente Fehlerprotokoll-Auswertung fĂŒr schnelle Problemlösung im Georg Fischer WMS

⚡ LOG-ANALYSE PRIORITÄTEN

Ziel: Kritische Fehler innerhalb 15 Minuten identifiziert und eskaliert

Log-Hotline: +41 81 770 8888 (Technical Support)

## Überblick Die systematische Analyse von Fehlerprotokollen ist entscheidend fĂŒr die Aufrechterhaltung der WMS-StabilitĂ€t. Diese Dokumentation beschreibt Methoden zur effizienten Identifikation, Kategorisierung und Behebung von Systemfehlern. ## Navigation
## Log-Zugriff {#log-zugriff}
### VerfĂŒgbare Log-Quellen #### **WMS Application Logs** ```yaml wms_logs: location: "C:\\WMS\\Logs\\" format: "YYYY-MM-DD_HH-mm-ss.log" retention: "30 Tage lokal, 1 Jahr archiviert" log_types: application_log: filename: "Application_{date}.log" content: "Anwendungslogik, GeschĂ€ftsprozesse" level: "INFO, WARN, ERROR, FATAL" system_log: filename: "System_{date}.log" content: "Systemereignisse, Ressourcen" level: "DEBUG, INFO, WARN, ERROR" integration_log: filename: "Integration_{date}.log" content: "SAP-Kommunikation, EDI, APIs" level: "INFO, WARN, ERROR" performance_log: filename: "Performance_{date}.log" content: "Performance-Metriken, Laufzeiten" level: "INFO, WARN" ``` #### **Database Logs** ```yaml sql_server_logs: location: "C:\\Program Files\\Microsoft SQL Server\\MSSQL15.MSSQLSERVER\\MSSQL\\Log\\" log_files: errorlog: description: "SQL Server Fehlerprotokoll" rotation: "Wöchentlich oder bei 10MB" content: "Startmeldungen, Fehler, Warnungen" agent_log: description: "SQL Server Agent Log" content: "Job-AusfĂŒhrungen, Schedules" retention: "4 Wochen" backup_log: description: "Backup/Restore Operationen" content: "Backup-Status, Fehler, Wiederherstellungen" ``` #### **Windows Event Logs** ```yaml windows_logs: zugriff: "eventvwr.msc oder PowerShell" relevant_logs: application: path: "Windows Logs > Application" filter: "Source: WMS*, Jungheinrich*" system: path: "Windows Logs > System" relevance: "Hardware-Fehler, Treiber-Probleme" security: path: "Windows Logs > Security" relevance: "Anmeldungsfehler, Berechtigungsprobleme" custom: path: "Applications and Services Logs" content: "Anwendungsspezifische Logs" ``` ### Log-Zugriffs-Methoden #### **Direkte Datei-Analyse** ```powershell # PowerShell-Befehle fĂŒr Log-Zugriff # Neueste Fehler anzeigen Get-Content "C:\WMS\Logs\Application_$(Get-Date -Format 'yyyy-MM-dd').log" | Select-String "ERROR|FATAL" | Select-Object -Last 20 # Log-Dateien nach GrĂ¶ĂŸe sortieren Get-ChildItem "C:\WMS\Logs\*.log" | Sort-Object Length -Descending | Select-Object Name, @{n='Size(MB)';e={[math]::Round($_.Length/1MB,2)}} # Letzte 1000 Zeilen einer Log-Datei Get-Content "C:\WMS\Logs\System_$(Get-Date -Format 'yyyy-MM-dd').log" -Tail 1000 # Fehler in einem bestimmten Zeitraum $startTime = (Get-Date).AddHours(-2) Get-WinEvent -FilterHashtable @{LogName='Application'; StartTime=$startTime; Level=2} ``` #### **Remote Log Access** ```yaml remote_access: rdp_connection: server: "WMS-SRV01.georgfischer.local" credentials: "Domain-Administrator-Account erforderlich" powershell_remoting: command: "Enter-PSSession -ComputerName WMS-SRV01" requirements: "PowerShell Remoting aktiviert" file_shares: path: "\\\\WMS-SRV01\\WMS-Logs$" permissions: "Leserecht fĂŒr IT-Support-Gruppe" log_shipping: destination: "Central Log Server" frequency: "Real-time via Syslog" retention: "1 Jahr zentral gespeichert" ```
## Analyse-Methoden {#analyse-methoden}
### Systematische Log-Analyse #### **Fehler-Priorisierung** ```yaml fehler_prioritaet: kritisch: keywords: ["FATAL", "OutOfMemoryException", "DatabaseConnectionLost", "SystemHalt"] response_time: "Sofortige Bearbeitung" escalation: "Automatische Benachrichtigung Management" hoch: keywords: ["ERROR", "Exception", "Failed", "Timeout", "AccessDenied"] response_time: "15 Minuten" escalation: "Team Lead nach 30 Minuten" mittel: keywords: ["WARN", "Warning", "Deprecated", "SlowQuery"] response_time: "2 Stunden" escalation: "Daily Review" niedrig: keywords: ["INFO", "Debug", "Trace"] response_time: "Best Effort" escalation: "Wöchentliche Analyse" ``` #### **Pattern Recognition** ```regex # Wichtige Regex-Muster fĂŒr Log-Analyse # Timestamp-Extraktion ^(\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2},\d{3}) # Exception-Erkennung (Exception|Error).*?\n(\s+at\s+.*\n)* # SQL-Fehler SQL.*?(Error|Exception|Failed).*?Message:\s*(.*?)\n # Performance-Probleme (slow|timeout|performance).*?(\d+(?:\.\d+)?)\s*(ms|seconds|minutes) # User-AktivitĂ€ten User\s+(\w+)\s+(login|logout|action)\s+(.+) # System Resources (Memory|CPU|Disk).*?(\d+(?:\.\d+)?)\s*% ``` #### **Korrelations-Analyse** ```yaml korrelation_methoden: zeitbasiert: window: "±5 Minuten um Fehler-Timestamp" sources: ["Application", "System", "Database", "Network"] ziel: "Identifikation von Root-Cause" benutzerbasiert: tracking: "User-ID durch alle Log-Quellen" scope: "Benutzer-spezifische Fehler-Muster" transaktionsbasiert: identifier: "Transaction-ID, Session-ID" verfolgung: "Ende-zu-Ende Transaktions-Verfolgung" systemkomponenten: mapping: "Fehler zu betroffenen System-Komponenten" impact_analysis: "Auswirkungsanalyse auf andere Komponenten" ``` ### Analysewerkzeuge #### **PowerShell-Analyse-Scripts** ```powershell # Error-Summary-Script function Get-WMSErrorSummary { param( [string]$LogPath = "C:\WMS\Logs", [int]$Hours = 24 ) $StartTime = (Get-Date).AddHours(-$Hours) $LogFiles = Get-ChildItem $LogPath -Filter "*.log" $ErrorSummary = @{} foreach ($LogFile in $LogFiles) { $Content = Get-Content $LogFile.FullName $Errors = $Content | Where-Object { $_ -match "ERROR|FATAL" -and $_ -match $StartTime.ToString("yyyy-MM-dd") } foreach ($Error in $Errors) { $ErrorType = ($Error -split "\s+")[3] # Annahme: 4. Element ist Error-Type if ($ErrorSummary.ContainsKey($ErrorType)) { $ErrorSummary[$ErrorType]++ } else { $ErrorSummary[$ErrorType] = 1 } } } return $ErrorSummary | Sort-Object Value -Descending } # Performance-Analysis function Get-WMSPerformanceMetrics { param( [string]$LogPath = "C:\WMS\Logs\Performance_$(Get-Date -Format 'yyyy-MM-dd').log" ) $Content = Get-Content $LogPath $SlowQueries = $Content | Where-Object { $_ -match "slow" -and $_ -match "(\d+)ms" } $Metrics = @{ 'Total Slow Queries' = $SlowQueries.Count 'Slowest Query' = ($SlowQueries | ForEach-Object { [regex]::Match($_, "(\d+)ms").Groups[1].Value } | Measure-Object -Maximum).Maximum 'Average Response Time' = ($SlowQueries | ForEach-Object { [regex]::Match($_, "(\d+)ms").Groups[1].Value } | Measure-Object -Average).Average } return $Metrics } ```
## Fehler-Kategorien {#fehler-kategorien}
### System-Kategorien #### **Anwendungsfehler** ```yaml application_errors: business_logic_errors: description: "Fehler in GeschĂ€ftslogik-Verarbeitung" examples: - "InvalidOrderStatus: Order cannot be shipped in current status" - "InsufficientInventory: Not enough stock for requested quantity" - "ValidationError: Article number format invalid" impact: "Funktionale EinschrĂ€nkungen" resolution: "Code-Review und Business Rule Validation" data_consistency_errors: description: "Dateninkonsistenzen zwischen Systemen" examples: - "StockMismatch: WMS stock differs from SAP" - "MasterDataOutOfSync: Article not found in local cache" - "TimestampConflict: Concurrent modification detected" impact: "DatenqualitĂ€tsprobleme" resolution: "Daten-Synchronisation und Reconciliation" integration_errors: description: "Probleme bei System-Integration" examples: - "SAPConnectionTimeout: RFC call timed out" - "EDITransmissionFailed: Message delivery failed" - "APIAuthenticationError: Invalid credentials" impact: "Unterbrochene GeschĂ€ftsprozesse" resolution: "Verbindungs-Diagnose und Credential-ÜberprĂŒfung" ``` #### **System-Level Fehler** ```yaml system_errors: resource_exhaustion: memory_leaks: pattern: "OutOfMemoryException|GC overhead limit exceeded" symptoms: "Langsame Performance, System freezes" diagnosis: "Memory Profiling, Heap Dumps" disk_space: pattern: "No space left on device|Disk full" symptoms: "Log rotation failures, Database write errors" diagnosis: "Disk usage analysis, cleanup procedures" cpu_overload: pattern: "High CPU usage|Thread pool exhausted" symptoms: "Slow response times, timeouts" diagnosis: "Performance counters, thread dumps" network_issues: connectivity: pattern: "Connection refused|Network unreachable" symptoms: "Integration failures, timeouts" diagnosis: "Network connectivity tests, firewall rules" dns_resolution: pattern: "Name resolution failed|Unknown host" symptoms: "Service discovery failures" diagnosis: "DNS configuration check" security_violations: authentication_failures: pattern: "Authentication failed|Invalid credentials" symptoms: "User login problems" diagnosis: "Credential validation, account status" authorization_errors: pattern: "Access denied|Insufficient privileges" symptoms: "Feature access restrictions" diagnosis: "Role and permission review" ``` ### Error Classification Matrix #### **Criticality vs. Frequency Matrix** | HĂ€ufigkeit \ KritikalitĂ€t | Niedrig | Mittel | Hoch | Kritisch | |---------------------------|---------|--------|------|----------| | **Sehr hĂ€ufig (>100/Tag)** | Monitor | Investigate | Fix Immediately | Emergency Response | | **HĂ€ufig (10-100/Tag)** | Log & Review | Investigate | High Priority Fix | Critical Fix | | **Gelegentlich (1-10/Tag)** | Log | Review Weekly | Investigate | High Priority | | **Selten (<1/Tag)** | Log | Monthly Review | Document | Investigate | #### **Automatische Klassifizierung** ```yaml auto_classification: rules: critical_keywords: - "FATAL" - "OutOfMemory" - "DatabaseConnectionLost" - "SystemHalt" - "SecurityBreach" high_priority_patterns: - "ERROR.*Exception" - "Failed.*Transaction" - "Timeout.*Critical" - "Integration.*Failed" performance_indicators: - "ResponseTime > 5000ms" - "QueryTime > 30s" - "CPU > 90%" - "Memory > 85%" machine_learning: model_type: "Classification Tree" features: ["error_text", "frequency", "time_pattern", "user_impact"] training_data: "Historical incidents with known resolutions" accuracy_target: "> 85% classification accuracy" ```
## Analysis Tools {#tools}
### Spezialisierte Log-Tools #### **ELK Stack Integration** ```yaml elk_stack: elasticsearch: version: "7.15+" indices: - "wms-application-logs-*" - "wms-system-logs-*" - "wms-performance-logs-*" retention: "90 Tage fĂŒr hot data, 1 Jahr warm/cold" logstash: pipelines: wms_application: input: "filebeat" filters: - "grok pattern matching" - "date parsing" - "error classification" output: "elasticsearch" kibana: dashboards: operational_overview: panels: ["Error Rate", "Response Times", "System Health"] refresh: "30 seconds" error_analysis: panels: ["Error Distribution", "Error Trends", "Top Errors"] timeframe: "Last 24 hours" performance_monitoring: panels: ["Transaction Times", "Resource Usage", "Throughput"] alerts: "Threshold-based alerting" ``` #### **Splunk Configuration** ```yaml splunk_setup: indexes: wms_main: max_data_size: "500GB" retention: "1 Jahr" sourcetypes: wms_application: pattern: "*.log" extraction_rules: "Custom field extraction" searches: error_trending: query: 'index=wms_main sourcetype=wms_application level=ERROR | timechart count by error_type' schedule: "Hourly" performance_baseline: query: 'index=wms_main sourcetype=wms_performance | stats avg(response_time) by operation' schedule: "Daily" alerts: critical_errors: search: 'index=wms_main level=FATAL' trigger: "Real-time" action: "Email + SMS notification" performance_degradation: search: 'index=wms_main sourcetype=wms_performance response_time>5000' trigger: "Count > 10 in 15 minutes" action: "Team notification" ``` #### **Custom Analysis Tools** ```csharp // C# Log Analyzer Beispiel public class WMSLogAnalyzer { public class LogEntry { public DateTime Timestamp { get; set; } public string Level { get; set; } public string Category { get; set; } public string Message { get; set; } public string StackTrace { get; set; } } public class AnalysisResult { public int TotalErrors { get; set; } public Dictionary ErrorsByType { get; set; } public List TopErrors { get; set; } public TimeSpan AnalysisDuration { get; set; } } public static AnalysisResult AnalyzeLogs(string logPath, DateTime fromDate) { var result = new AnalysisResult { ErrorsByType = new Dictionary(), TopErrors = new List() }; var logFiles = Directory.GetFiles(logPath, "*.log") .Where(f => File.GetCreationTime(f) >= fromDate); foreach (var logFile in logFiles) { var lines = File.ReadAllLines(logFile); foreach (var line in lines) { if (IsErrorLine(line)) { result.TotalErrors++; var errorType = ExtractErrorType(line); if (result.ErrorsByType.ContainsKey(errorType)) result.ErrorsByType[errorType]++; else result.ErrorsByType[errorType] = 1; } } } result.TopErrors = result.ErrorsByType .OrderByDescending(kvp => kvp.Value) .Take(10) .Select(kvp => $"{kvp.Key}: {kvp.Value} occurrences") .ToList(); return result; } private static bool IsErrorLine(string line) { return line.Contains("ERROR") || line.Contains("FATAL") || line.Contains("Exception"); } private static string ExtractErrorType(string line) { // Regex to extract error type from log line var match = Regex.Match(line, @"(\w+(?:Exception|Error))"); return match.Success ? match.Groups[1].Value : "Unknown"; } } ``` ### Monitoring Dashboards #### **Real-time Monitoring** ```yaml real_time_dashboard: metrics: error_rate: calculation: "Errors per minute" threshold: "> 5 errors/minute" alert: "Immediate notification" response_time: percentiles: ["50th", "95th", "99th"] target: "95th percentile < 2 seconds" system_health: cpu_usage: "< 80%" memory_usage: "< 85%" disk_space: "< 90%" visualizations: error_heatmap: type: "Heatmap" dimensions: ["Time", "Error Type"] color_scale: "Green to Red" trend_analysis: type: "Line Chart" metrics: ["Error Count", "Response Time"] timeframe: "Last 24 hours" status_indicators: type: "Status Lights" systems: ["WMS Core", "Database", "SAP Integration", "Hardware"] ```
## Automatisierung {#automation}
### Automated Error Detection #### **Event-Driven Processing** ```yaml automated_detection: log_watchers: file_system_watcher: path: "C:\\WMS\\Logs" filter: "*.log" event: "File Modified" action: "Real-time parsing" event_log_monitor: source: "Windows Event Log" levels: ["Error", "Critical"] filter: "Source=WMS*" pattern_matching: regex_rules: - pattern: "FATAL.*" severity: "Critical" action: "Immediate alert" - pattern: "ERROR.*OutOfMemory" severity: "High" action: "Resource monitoring + alert" - pattern: "WARN.*PerformanceDegradation" severity: "Medium" action: "Trend analysis" machine_learning: anomaly_detection: algorithm: "Isolation Forest" features: ["log_frequency", "error_patterns", "time_correlations"] training_period: "30 Tage" sensitivity: "95% confidence interval" ``` #### **Automated Response Actions** ```yaml automated_responses: immediate_actions: critical_errors: - "SMS alert to on-call engineer" - "Create high-priority incident ticket" - "Capture system state snapshot" - "Initiate automated diagnostics" memory_issues: - "Trigger garbage collection" - "Capture memory dump" - "Monitor memory usage trend" - "Prepare for service restart if needed" integration_failures: - "Retry failed operations" - "Switch to backup connection" - "Log detailed connection state" - "Notify integration team" escalation_procedures: level_1_response: timeframe: "5 minutes" actions: ["Automated diagnostics", "Self-healing attempts"] level_2_escalation: timeframe: "15 minutes" actions: ["Technical team notification", "Enhanced monitoring"] level_3_escalation: timeframe: "45 minutes" actions: ["Management notification", "Vendor escalation"] ``` ### Predictive Analytics #### **Error Prediction Models** ```python # Python Example: Error Prediction Model import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report class WMSErrorPredictor: def __init__(self): self.model = RandomForestClassifier(n_estimators=100, random_state=42) self.features = [ 'error_frequency_1h', 'error_frequency_6h', 'error_frequency_24h', 'cpu_usage_avg', 'memory_usage_avg', 'disk_io_rate', 'active_users', 'transaction_volume', 'hour_of_day', 'day_of_week' ] def prepare_training_data(self, log_data): # Feature engineering from log data df = pd.DataFrame(log_data) # Time-based features df['hour_of_day'] = pd.to_datetime(df['timestamp']).dt.hour df['day_of_week'] = pd.to_datetime(df['timestamp']).dt.dayofweek # Rolling windows for error frequency df['error_frequency_1h'] = df['error_count'].rolling('1H').sum() df['error_frequency_6h'] = df['error_count'].rolling('6H').sum() df['error_frequency_24h'] = df['error_count'].rolling('24H').sum() # Target: Will there be a critical error in next hour? df['critical_error_next_hour'] = df['critical_errors'].shift(-1) > 0 return df[self.features], df['critical_error_next_hour'] def train_model(self, training_data): X, y = self.prepare_training_data(training_data) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) self.model.fit(X_train, y_train) # Evaluate model predictions = self.model.predict(X_test) print(classification_report(y_test, predictions)) def predict_errors(self, current_metrics): probability = self.model.predict_proba([current_metrics])[0][1] return { 'critical_error_probability': probability, 'risk_level': 'High' if probability > 0.7 else 'Medium' if probability > 0.3 else 'Low', 'recommended_actions': self.get_recommendations(probability) } def get_recommendations(self, probability): if probability > 0.7: return [ "Increase monitoring frequency", "Prepare incident response team", "Consider preemptive service restart" ] elif probability > 0.3: return [ "Monitor system metrics closely", "Review recent changes" ] else: return ["Continue normal operations"] ``` #### **Trend Analysis** ```yaml trend_analysis: metrics_tracked: error_rates: calculation: "Errors per hour by category" trending: "7-day moving average" prediction: "Next 24-hour error volume" performance_degradation: calculation: "Response time percentiles" trending: "Week-over-week comparison" prediction: "Performance threshold breach probability" resource_utilization: calculation: "CPU, Memory, Disk usage patterns" trending: "Growth rate analysis" prediction: "Resource exhaustion timeline" alerting_thresholds: trend_alerts: error_rate_increase: "> 50% increase over 3-day average" performance_decline: "> 20% response time increase" resource_growth: "> 10% utilization increase per week" predictive_maintenance: schedule_optimization: analysis: "Failure pattern correlation with maintenance schedules" recommendation: "Optimal maintenance windows" component_lifecycle: tracking: "Error patterns by system component age" prediction: "Component replacement recommendations" ```
## Support & Kontakte ### Error Analysis Support Team ```yaml support_kontakte: log_analysis_team: team: "Technical Log Analysis" telefon: "+41 81 770 8888" email: "log-analysis@georgfischer.com" verfuegbarkeit: "24/7 fĂŒr kritische Fehler" system_monitoring: team: "System Monitoring & Alerting" telefon: "+41 81 770 8899" email: "monitoring@georgfischer.com" verfuegbarkeit: "Mo-Fr 06:00-22:00" automation_team: team: "Log Automation & Tools" telefon: "+41 81 770 8877" email: "automation@georgfischer.com" verfuegbarkeit: "Mo-Fr 08:00-17:00" emergency_escalation: hotline: "+41 81 770 9999" verfuegbarkeit: "24/7 fĂŒr System-kritische Störungen" escalation: "Automatische Eskalation nach 20 Minuten" ``` ## Quick Reference ### Critical Commands ```bash # Wichtigste PowerShell-Befehle fĂŒr Log-Analyse # Aktuelle Fehler anzeigen Get-EventLog -LogName Application -EntryType Error -Newest 10 # WMS-Logs nach Fehlern durchsuchen Select-String -Path "C:\WMS\Logs\*.log" -Pattern "ERROR|FATAL" | Select-Object -Last 20 # Systemressourcen prĂŒfen Get-Counter "\Processor(_Total)\% Processor Time","\Memory\Available MBytes" # Dienste-Status prĂŒfen Get-Service | Where-Object {$_.Name -like "*WMS*"} | Select-Object Name, Status ``` ### Error Severity Matrix | Severity | Response Time | Escalation | Actions | |----------|--------------|------------|----------| | **FATAL** | Immediate | Automatic | Emergency response, system halt possible | | **ERROR** | 15 minutes | After 30 min | Investigation required, potential impact | | **WARN** | 2 hours | Daily review | Monitor trends, preventive measures | | **INFO** | Best effort | Weekly review | Documentation and analysis | --- *Diese Error Logs Dokumentation ermöglicht die systematische und effiziente Analyse von WMS-Fehlerprotokollen bei Georg Fischer. Kontinuierliche Updates gewĂ€hrleisten optimale Fehlerbehandlung. Letzte Aktualisierung: MĂ€rz 2025*